Affiliation:
1. Department of Biostatistics, Yale School of Public Health, USA
Abstract
The two-stage (or doubly) randomized preference trial design is an important tool for researchers seeking to disentangle the role of patient treatment preference on treatment response through estimation of selection and preference effects. Up until now, these designs have been limited by their assumption of equal preference rates and effect sizes across the entire study population. We propose a stratified two-stage randomized trial design that addresses this limitation. We begin by deriving stratified test statistics for the treatment, preference, and selection effects. Next, we develop a sample size formula for the number of patients required to detect each effect. The properties of the model and the efficiency of the design are established using a series of simulation studies. We demonstrate the applicability of the design using a study of Hepatitis C treatment modality, specialty clinic versus mobile medical clinic. In this example, a stratified preference design (stratified by alcohol/drug use) may more closely capture the true distribution of patient preferences and allow for a more efficient design than a design which ignores these differences (unstratified version).
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献