Group sequential two‐stage preference designs

Author:

Liu Ruyi12,Li Fan13ORCID,Esserman Denise13ORCID,Ryan Mary M.4ORCID

Affiliation:

1. Department of Biostatistics Yale School of Public Health New Haven Connecticut USA

2. Center for Methods in Implementation and Prevention Science Yale School of Public Health New Haven Connecticut USA

3. Yale Center for Analytical Sciences Yale School of Public Health New Haven Connecticut USA

4. Departments of Population Health Sciences & Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

The two‐stage preference design (TSPD) enables inference for treatment efficacy while allowing for incorporation of patient preference to treatment. It can provide unbiased estimates for selection and preference effects, where a selection effect occurs when patients who prefer one treatment respond differently than those who prefer another, and a preference effect is the difference in response caused by an interaction between the patient's preference and the actual treatment they receive. One potential barrier to adopting TSPD in practice, however, is the relatively large sample size required to estimate selection and preference effects with sufficient power. To address this concern, we propose a group sequential two‐stage preference design (GS‐TSPD), which combines TSPD with sequential monitoring for early stopping. In the GS‐TSPD, pre‐planned sequential monitoring allows investigators to conduct repeated hypothesis tests on accumulated data prior to full enrollment to assess study eligibility for early trial termination without inflating type I error rates. Thus, the procedure allows investigators to terminate the study when there is sufficient evidence of treatment, selection, or preference effects during an interim analysis, thereby reducing the design resource in expectation. To formalize such a procedure, we verify the independent increments assumption for testing the selection and preference effects and apply group sequential stopping boundaries from the approximate sequential density functions. Simulations are then conducted to investigate the operating characteristics of our proposed GS‐TSPD compared to the traditional TSPD. We demonstrate the applicability of the design using a study of Hepatitis C treatment modality.

Funder

National Center for Advancing Translational Sciences

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3