Addressing geographic confounding through spatial propensity scores: a study of racial disparities in diabetes

Author:

Davis Melanie L1ORCID,Neelon Brian1,Nietert Paul J1ORCID,Hunt Kelly J1,Burgette Lane F.2,Lawson Andrew B1,Egede Leonard E3

Affiliation:

1. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA

2. RAND Corporation, Arlington, VA, USA

3. Division of General Internal Medicine Froedtert, The Medical College of Wisconsin, Milwaukee, WI, USA

Abstract

Motivated by a study exploring differences in glycemic control between non-Hispanic black and non-Hispanic white veterans with type 2 diabetes, we aim to address a type of confounding that arises in spatially referenced observational studies. Specifically, we develop a spatial doubly robust propensity score estimator to reduce bias associated with geographic confounding, which occurs when measured or unmeasured confounding factors vary by geographic location, leading to imbalanced group comparisons. We augment the doubly robust estimator with spatial random effects, which are assigned conditionally autoregressive priors to improve inferences by borrowing information across neighboring geographic regions. Through a series of simulations, we show that ignoring spatial variation results in increased absolute bias and mean squared error, while the spatial doubly robust estimator performs well under various levels of spatial heterogeneity and moderate sample sizes. In the motivating application, we construct three global estimates of the risk difference between race groups: an unadjusted estimate, a doubly robust estimate that adjusts only for patient-level information, and a hierarchical spatial doubly robust estimate. Results indicate a gradual reduction in the risk difference at each stage, with the inclusion of spatial random effects providing a 20% reduction compared to an estimate that ignores spatial heterogeneity. Smoothed maps indicate poor glycemic control across Alabama and southern Georgia, areas comprising the so-called “stroke belt.” These results suggest the need for community-specific interventions to target diabetes in geographic areas of greatest need.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3