The impact of directly observed therapy on the efficacy of Tuberculosis treatment: a Bayesian multilevel approach

Author:

Nobre Widemberg S1,Schmidt Alexandra M2ORCID,Moodie Erica E M2ORCID,Stephens David A3

Affiliation:

1. Department of Statistical Methods, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil

2. Department of Epidemiology, Biostatistics and Occupational Health, McGill University , Montreal, QC , Canada

3. Department of Mathematics and Statistics, McGill University , Montreal, QC , Canada

Abstract

Abstract We propose and discuss a Bayesian procedure to estimate causal effects for multilevel observations in the presence of confounding. This work is motivated by an interest in determining the causal impact of directly observed therapy on the successful treatment of Tuberculosis. We focus on propensity score regression and covariate adjustment to balance the treatment allocation. We discuss the need to include latent local-level random effects in the propensity score model to reduce bias in the estimation of causal effects. A simulation study suggests that accounting for the multilevel nature of the data with latent structures in both the outcome and propensity score models has the potential to reduce bias in the estimation of causal effects.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3