Using information criteria to select smoothing parameters when analyzing survival data with time-varying coefficient hazard models

Author:

Luo Lingfeng1ORCID,He Kevin1,Wu Wenbo1ORCID,Taylor Jeremy MG1

Affiliation:

1. School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, USA

Abstract

Analyzing the large-scale survival data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program may help guide the management of cancer. Detecting and characterizing the time-varying effects of factors collected at the time of diagnosis could reveal important and useful patterns. However, fitting a time-varying effect model by maximizing the partial likelihood with such large-scale survival data is not feasible with most existing software. Moreover, estimating time-varying coefficients using spline based approaches requires a moderate number of knots, which may lead to unstable estimation and over-fitting issues. To resolve these issues, adding a penalty term greatly aids estimation. The selection of penalty smoothing parameters is difficult in this time-varying setting, as traditional ways like using Akaike information criterion do not work, while cross-validation methods have a heavy computational burden, leading to unstable selections. We propose modified information criteria to determine the smoothing parameter and a parallelized Newton-based algorithm for estimation. We conduct simulations to evaluate the performance of the proposed method. We find that penalization with the smoothing parameter chosen by a modified information criteria is effective at reducing the mean squared error of the estimated time-varying coefficients. Compared to a number of alternatives, we find that the estimates of the variance derived from Bayesian considerations have the best coverage rates of confidence intervals. We apply the method to SEER head-and-neck, colon, prostate, and pancreatic cancer data and detect the time-varying nature of various risk factors.

Funder

US National Institutes of Health

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3