Bayesian treatment comparison using parametric mixture priors computed from elicited histograms

Author:

Thall Peter F1ORCID,Ursino Moreno2ORCID,Baudouin Véronique3,Alberti Corinne4,Zohar Sarah2

Affiliation:

1. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA

2. UMRS 1138, CRC, INSERM, University Paris 5, University Paris 6, France

3. Department of Pediatric Nephrology, University hospital Robert Debré-APHP, France

4. UMR 1123, INSERM, Hôpital Robert-Debré, APHP, University Paris 7, France

Abstract

A Bayesian methodology is proposed for constructing a parametric prior on two treatment effect parameters, based on graphical information elicited from a group of expert physicians. The motivating application is a 70-patient randomized trial to compare two treatments for idiopathic nephrotic syndrome in children. The methodology relies on histograms of the treatment parameters constructed manually by each physician, applying the method of Johnson et al. (2010). For each physician, a marginal prior for each treatment parameter characterized by location and precision hyperparameters is fit to the elicited histogram. A bivariate prior is obtained by averaging the marginals over a latent physician effect distribution. An overall prior is constructed as a mixture of the individual physicians’ priors. A simulation study evaluating several versions of the methodology is presented. A framework is given for performing a sensitivity analysis of posterior inferences to prior location and precision and illustrated based on the idiopathic nephrotic syndrome trial.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3