Abstract
Abstract
Background
When conducing Phase-III trial, regulatory agencies and investigators might want to get reliable information about rare but serious safety outcomes during the trial. Bayesian non-inferiority approaches have been developed, but commonly utilize historical placebo-controlled data to define the margin, depend on a single final analysis, and no recommendation is provided to define the prespecified decision threshold. In this study, we propose a non-inferiority Bayesian approach for sequential monitoring of rare dichotomous safety events incorporating experts’ opinions on margins.
Methods
A Bayesian decision criterion was constructed to monitor four safety events during a non-inferiority trial conducted on pregnant women at risk for premature delivery. Based on experts’ elicitation, margins were built using mixtures of beta distributions that preserve experts’ variability. Non-informative and informative prior distributions and several decision thresholds were evaluated through an extensive sensitivity analysis. The parameters were selected in order to maintain two rates of misclassifications under prespecified rates, that is, trials that wrongly concluded an unacceptable excess in the experimental arm, or otherwise.
Results
The opinions of 44 experts were elicited about each event non-inferiority margins and its relative severity. In the illustrative trial, the maximal misclassification rates were adapted to events’ severity. Using those maximal rates, several priors gave good results and one of them was retained for all events. Each event was associated with a specific decision threshold choice, allowing for the consideration of some differences in their prevalence, margins and severity. Our decision rule has been applied to a simulated dataset.
Conclusions
In settings where evidence is lacking and where some rare but serious safety events have to be monitored during non-inferiority trials, we propose a methodology that avoids an arbitrary margin choice and helps in the decision making at each interim analysis. This decision rule is parametrized to consider the rarity and the relative severity of the events and requires a strong collaboration between physicians and the trial statisticians for the benefit of all. This Bayesian approach could be applied as a complement to the frequentist analysis, so both Data Safety Monitoring Boards and investigators can benefit from such an approach.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference22 articles.
1. U S Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Non-Inferiority Clinical Trials to Establish Effectiveness - Guidance for Industry; 2016.
2. Sorbello A, Komo S, Valappil T. Noninferiority Margin for Clinical Trials of Antibacterial Drugs for Nosocomial Pneumonia. Drug Inf J. 2010; 44(2):165–76.
3. Aupiais C, Zohar S, Taverny G, Le Roux E, Boulkedid R, Alberti C. Exploring how non-inferiority and equivalence are assessed in paediatrics: a systematic review. Arch Dis Child. 2018; 103(11):1067–75.
4. Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med. 2007; 26(1):53–77.
5. Gamalo-Siebers M, Gao A, Lakshminarayanan M, Liu G, Natanegara F, Railkar R, et al.Bayesian methods for the design and analysis of noninferiority trials. J Biopharm Stat. 2016; 26(5):823–41.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献