Random-effects meta-analysis: the number of studies matters

Author:

Guolo Annamaria1,Varin Cristiano2

Affiliation:

1. University of Padova, Padova, Italy

2. Ca’ Foscari University, Venice, Italy

Abstract

This paper investigates the impact of the number of studies on meta-analysis and meta-regression within the random-effects model framework. It is frequently neglected that inference in random-effects models requires a substantial number of studies included in meta-analysis to guarantee reliable conclusions. Several authors warn about the risk of inaccurate results of the traditional DerSimonian and Laird approach especially in the common case of meta-analysis involving a limited number of studies. This paper presents a selection of likelihood and non-likelihood methods for inference in meta-analysis proposed to overcome the limitations of the DerSimonian and Laird procedure, with a focus on the effect of the number of studies. The applicability and the performance of the methods are investigated in terms of Type I error rates and empirical power to detect effects, according to scenarios of practical interest. Simulation studies and applications to real meta-analyses highlight that it is not possible to identify an approach uniformly superior to alternatives. The overall recommendation is to avoid the DerSimonian and Laird method when the number of meta-analysis studies is modest and prefer a more comprehensive procedure that compares alternative inferential approaches. R code for meta-analysis according to all of the inferential methods examined in the paper is provided.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3