Spinal and Brain Control of Human Walking: Implications for Retraining of Walking

Author:

Yang Jaynie F.1,Gorassini Monica2

Affiliation:

1. Department of Physical Therapy, the Centre for Neuroscience; University of Alberta, Edmonton, Alberta, Canada

2. Department of Biomedical Engineering, the Centre for Neuroscience; University of Alberta, Edmonton, Alberta, Canada

Abstract

In this update, the authors will discuss evidence for both spinal and brain regulation of walking in humans. They will consider the sensory control of walking in young babies and spinal cord–injured adults, two models with weak descending input from the brain, to suggest that subcortical structures are important in shaping walking behavior. Based on evidence from development, the authors suggest that the primitive pattern of walking seen in babies forms the base upon which additional features are added by supraspinal input as independent walking develops. Increasing evidence suggests the motor cortex is important in the control of level-ground walking in adults, in contrast to quadrupeds. This brain input seems particularly important for distal flexors in the leg. Finally, the authors will consider evidence that the recovery of walking after incomplete spinal cord injuries is dependent on the presence of descending input from the motor cortex and our ability to strengthen that input. These findings imply that training methods for improving walking after injury to the nervous system must promote the involvement of both spinal and brain circuits.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3