Auditory Cue Effects on Gait-Phase-Dependent Electroencephalogram (EEG) Modulations during Overground and Treadmill Walking

Author:

Tharawadeepimuk Kittichai1,Limroongreungrat Weerawat1ORCID,Pilanthananond Metaneeya2,Nanbancha Ampika1ORCID

Affiliation:

1. College of Sports Science and Technology, Mahidol University, Nakhon Pathom 73170, Thailand

2. Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

Walking rehabilitation following injury or disease involves voluntary gait modification, yet the specific brain signals underlying this process remains unclear. This aim of this study was to investigate the impact of an auditory cue on changes in brain activity when walking overground (O) and on a treadmill (T) using an electroencephalogram (EEG) with a 32-electrode montage. Employing a between-group repeated-measures design, 24 participants (age: 25.7 ± 3.8 years) were randomly allocated to either an O (n = 12) or T (n = 12) group to complete two walking conditions (self-selected speed control (sSC) and speed control (SC)). The differences in brain activities during the gait cycle were investigated using statistical non-parametric mapping (SnPM). The addition of an auditory cue did not modify cortical activity in any brain area during the gait cycle when walking overground (all p > 0.05). However, significant differences in EEG activity were observed in the delta frequency band (0.5–4 Hz) within the sSC condition between the O and T groups. These differences occurred at the central frontal (loading phase) and frontocentral (mid stance phase) brain areas (p < 0.05). Our data suggest auditory cueing has little impact on modifying cortical activity during overground walking. This may have practical implications in neuroprosthesis development for walking rehabilitation, sports performance optimization, and overall human quality-of-life improvement.

Funder

Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3