The Cadherin Family of Cell Adhesion Molecules: Multiple Roles in Synaptic Plasticity

Author:

Huntley George W.1,Gil Orlando,Bozdagi Ozlem2

Affiliation:

1. Fishberg Research Center for Neurobiology and the Program in Cell Adhesion The Mount Sinai School of Medicine of New York University;Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, Box 1065, 1425 Madison Ave., New York, NY 10029;

2. Fishberg Research Center for Neurobiology and the Program in Cell Adhesion The Mount Sinai School of Medicine of New York University

Abstract

Cadherins are cell adhesion molecules that are critically important for establishing brain structure and connectivity during early development. They are enriched at synapses and, by virtue of a number of properties including homophilic recognition and molecular diversity, have been implicated in the generation of synaptic specificity. Cadherins also participate in remodeling synaptic architecture and modifying the strength of the synaptic signal, thereby retaining an active role in synaptic structure, function, and plasticity, which extends beyond initial development. Cadherins have been implicated in the induction of long-term potentiation (LTP) of hippocampal synaptic strength, a cellular model for learning and memory. LTP is associated with the synthesis and recruitment of N-cadherin to newly forming synaptic junctions, induces molecular changes to N-cadherin indicative of augmented adhesive force, and can be prevented when cadherin adhesion is blocked. NMDA receptor activation, which is critically required for synaptic plasticity, may provide a signal that regulates the molecular configuration of synaptic N-cadherin, and therefore the strength of adhesion across the synaptic cleft. Additionally, there exists at the synapse a pool of surface cadherins that is untethered to the actin cytoskeleton and capable of a rapid and reversible dispersion along the plasmalemma under conditions of strong activity. These observations suggest that synaptic activity dynamically regulates both the strength and the localization of cadherin-cadherin bonds across the synaptic junctional interface, changes that may be crucial for regulating synaptic plasticity.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3