The potential influence of genome‐wide adaptive divergence on conservation translocation outcome in an isolated greater sage‐grouse population

Author:

Zimmerman Shawna J.1ORCID,Aldridge Cameron L.1ORCID,Schroeder Michael A.2,Fike Jennifer A.1ORCID,Cornman Robert Scott1ORCID,Oyler‐McCance Sara J.1ORCID

Affiliation:

1. Fort Collins Science Center U.S. Geological Survey Fort Collins Colorado USA

2. Washington Department of Fish and Wildlife Bridgeport Washington USA

Abstract

AbstractConservation translocations are an important conservation tool commonly employed to augment declining or reestablish extirpated populations. One goal of augmentation is to increase genetic diversity and reduce the risk of inbreeding depression (i.e., genetic rescue). However, introducing individuals from significantly diverged populations risks disrupting coadapted traits and reducing local fitness (i.e., outbreeding depression). Genetic data are increasingly more accessible for wildlife species and can provide unique insight regarding the presence and retention of introduced genetic variation from augmentation as an indicator of effectiveness and adaptive similarity as an indicator of source and recipient population suitability. We used 2 genetic data sets to evaluate augmentation of isolated populations of greater sage‐grouse (Centrocercus urophasianus) in the northwestern region of the species range (Washington, USA) and to retrospectively evaluate adaptive divergence among source and recipient populations. We developed 2 statistical models for microsatellite data to evaluate augmentation outcomes. We used one model to predict genetic diversity after augmentation and compared these predictions with observations of genetic change. We used the second model to quantify the amount of observed reproduction attributed to transplants (proof of population integration). We also characterized genome‐wide adaptive divergence among source and recipient populations. Observed genetic diversity (HO = 0.65) was higher in the recipient population than predicted had no augmentation occurred (HO = 0.58) but less than what was predicted by our model (HO = 0.75). The amount of shared genetic variation between the 2 geographically isolated resident populations increased, which is evidence of periodic gene flow previously assumed to be rare. Among candidate adaptive genes associated with elevated fixation index (FST) (143 genes) or local environmental variables (97 and 157 genes for each genotype–environment association method, respectively), we found clusters of genes with related functions that may influence the ability of transplants to use local resources and navigate unfamiliar environments and their reproductive potential, all possible reasons for low genetic retention from augmentation.

Funder

U.S. Fish and Wildlife Service

U.S. Geological Survey

Washington Department of Fish and Wildlife

Publisher

Wiley

Reference137 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3