Amyloid, APP, and Electrical Activity of the Brain

Author:

Hefter Dimitri12ORCID,Ludewig Susann34,Draguhn Andreas1,Korte Martin34

Affiliation:

1. Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany

2. RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany

3. Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany

4. Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany

Abstract

The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Gemeinschaft

medizinischen fakultät heidelberg, universität heidelberg

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3