Notating disfluencies and temporal deviations in music and arrhythmia

Author:

Chew Elaine1

Affiliation:

1. Queen Mary University of London, UK.

Abstract

Expressive music performance and cardiac arrhythmia can be viewed as deformations of, or deviations from, an underlying pulse stream. I propose that the results of these pulse displacements can be treated as actual rhythms and represented accurately via a literal application of common music notation, which encodes proportional relations among duration categories, and figural and metric groupings. I apply the theory to recorded music containing extreme timing deviations and to electrocardiographic (ECG) recordings of cardiac arrhythmias. The rhythm transcriptions are based on rigorous computer-assisted quantitative measurements of onset timings and durations. The root-mean-square error ranges for the rhythm transcriptions were (19.1, 87.4) ms for the music samples and (24.8, 53.0) ms for the arrhythmia examples. For the performed music, the representation makes concrete the gap between the score and performance. For the arrhythmia ECGs, the transcriptions show rhythmic patterns evolving through time, progressions which are obscured by predominant individual beat morphology- and frequency-based representations. To make tangible the similarities between cardiac and music rhythms, I match the heart rhythms to music with similar rhythms to form assemblage pieces. The use of music notation leads to representations that enable formal comparisons and automated as well as human-readable analysis of the time structures of performed music and of arrhythmia ECG sequences beyond what is currently possible.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Annotation and Analysis of Recorded Piano Performances on the Web;Journal of the Audio Engineering Society;2022-12-12

2. COSMOS: Computational Shaping and Modeling of Musical Structures;Frontiers in Psychology;2022-05-27

3. Putting (One's) Heart into Music;European Heart Journal;2021-03-30

4. On Making Music with Heartbeats;Handbook of Artificial Intelligence for Music;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3