Study on influencing factors of hydrodynamics based on AUV docking with conical dock

Author:

Diao Jiayu12,Li Weimin1ORCID,Yuan Xueqing2,Jiang Kai3,Zhao Yifeng2

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

3. College of Intelligent Iot, Sino-German Applied Technology School, Qingdao West Coast New Area, Qingdao, China

Abstract

It is necessary to investigate the dynamic performance during autonomous underwater vehicle (AUV) underwater docking to aid in control and to enhance docking safety. Therefore, in this study, the docking hydrodynamic characteristics (including the docking system’s streamline, velocity vector, and surface pressure during the overall docking process) of the AUV with conical hood dock are determined by using the dynamic grid technology, and the water drag force situations of the AUV docking with conical hood dock are studied from the perspectives of different velocities, accelerations, navigation modes, and structures. Additionally, the multiple nonlinear regression fits and the preliminary docking test were examined. Furthermore, brief inferences obtained are as follows: First, the maximum pressure is situated at the upstream surface of the dock conical hood and the head of the AUV, and the maximum rotation angle of the streamline is situated at the outermost ring of dock conical hood. Within a specified range, the rotation angle of the streamline affected by the conical hood progressively declines as the AUV docks deeper into the conical hood. Second, low velocity uniform docking, deceleration docking, and chase docking can reduce the drag force to a certain extent during docking. Finally, both arc shape and mesh structure can decrease the water drag force of docking to a specified degree. This research provides a theoretical basis and reference methods for the dynamic research of the docking system, and other related research can be carried out through the methods and results of this research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Guest editorial for the special issue on “marine hydrodynamics for innovative design”;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3