Establishment of cavitation inception speed judgment criteria by cavitation noise analysis for underwater vehicles

Author:

Jeong Seung-Jin12ORCID,Hong Suk-Yoon12,Song Jee-Hun3ORCID,Kwon Hyun-Wung4,Seol Han-Shin5

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, South Korea

2. Research Institute of Marine Systems Engineering, Seoul National University, Seoul, South Korea

3. Department of Naval Architecture and Ocean Engineering, Chonnam National University, Yeosu, South Korea

4. Department of Shipbuilding and Marine Engineering, Koje College, Geoje, South Korea

5. Advanced Ship Research Division, Naval Ship Engineering Research Center, Korea Research Institute of Ships and Ocean Engineering, Daejeon, South Korea

Abstract

Cavitation occurs on objects that move underwater at high speeds, and it is accompanied by an increase in hull vibrations, a reduction in propulsion performance, and an increase in noise that is important for warships and submarines. Of the various types of cavitations, tip vortex cavitations (TVC) are the earliest occurring and are considered the most important in terms of cavitation inception speed (CIS). This study predicts the cavitation inception speed by conducting cavitation noise analyses. The trend of the noise according to the cavitation numbers before and after CIS was analysed, and the quantitative criteria to determine the CIS were presented through established procedures. The CIS value obtained through the analysis was verified by comparing it against the value obtained experimentally. The methods used to analyse the cavitation inception speed are developed using bubble dynamics for cavitation noises. First, flow-field information was obtained downstream of the wing to estimate the external force acting on the bubbles, and this was used to calculate the behaviour of the cavitation bubbles. The bubble dynamics analyses were performed for each cavitation nuclei by Lagrange approach to calculate the behaviour of the bubbles. The number of cavitation nuclei was calculated based on the density function with random placement upstream of the wing. The cavitation noise was analysed for various cavitation numbers, and the tendency of the noise generated for each case was investigated. The noise analysis results and the CIS predictions were compared and verified with the measured values in the Large Cavitation Tunnel (LCT) of the Korea Research Institute of Ship & Ocean Engineering (KRISO). Using these results, the effect of the tip vortex cavitation on the total flow noise was analysed, and CIS determination criteria using noise values was validated and established.

Funder

National Research Foundation of Korea

Research Institute of Marine Systems Engineering

Future Submarine Low Noise Propeller Research Laboratory

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3