Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines

Author:

Dai Y M1,Gardiner N1,Sutton R1,Dyson P K1

Affiliation:

1. School of Marine Science and Engineering, University of Plymouth, Plymouth, UK

Abstract

This work reviews hydrodynamic analysis models developed for the design of Darrieus-type vertical axis marine current turbines, with particular emphasis on the prediction of hydrodynamic rotor performance, as well as their suitability for aiding the optimization process, either directly, or as a fast filter of potential blade profiles. In order to improve the performance of a marine current turbine it is necessary accurately to model the flow passing the turbine’s blades. Several types of models exist for Darrieus-type turbines, from momentum-based streamtube models to complex computational fluids dynamics (CFD) simulations. With continuously varying large angles of attack on the blades, the main issue is accurate prediction of the flow field around the rotor and thus its loads and torque. This is further complicated by the significant inherent unsteady hydrodynamic characteristics and potential for dynamic stall. Comparisons of the analytical results with experimental data are presented to compare these different models and thus illustrate their areas of suitability in this context. In conclusion, vertical axis machines have the potential of high power capture compared with that of their horizontal counterparts but this will depend on blade profile and design configuration, solidity, and tip speed ratio. None of the existing theoretical methods really captures the actual performance of the machines except for detailed CFD simulations, which are inevitably computational time intensive.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3