Abstract
In this study, three-dimensional transient numerical simulations of the flow around a cross flow water turbine of the type H-Darrieus are performed. The hydrodynamic characteristics and performance of the turbine are investigated by means of a time-accurate unsteady Reynolds-averaged Navier–Stokes (URANS) commercial solver (ANSYS-Fluent v. 19) where the time dependent rotor-stator interaction is described by the sliding mesh approach. The transition shear stress transport turbulence model has been employed to represent the turbulent dynamics of the underlying flow. Computations are validated versus previous experimental work in terms of the turbine efficiency curve showing good agreement between numerical and experimental values. The behavior of the power and force coefficients as a function of turbine angular speed is analyzed. Moreover, visualizations and analyses of the instantaneous vorticity iso-surfaces developing at different blade rotational velocities are presented including a few movies as additional material. Finally, the fluid variables fields are averaged along a turbine revolution and are compared with the steady predictions of simplified steady approaches based on the blade element momentum theory and the double multiple streamtube method (BEM-DMS).
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献