Clinical use of Electroencephalography in the Assessment of Acute Thermal Pain: A Narrative Review Based on Articles From 2009 to 2019

Author:

Savignac Chloé12,Ocay Don Daniel12,Mahdid Yacine1,Blain-Moraes Stefanie1,Ferland Catherine E.123ORCID

Affiliation:

1. McGill University, Montreal, Quebec, Canada

2. Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada

3. Research Institute-McGill University Health Centre, Montreal, Quebec, Canada

Abstract

Nowadays, no practical system has successfully been able to decode and predict pain in clinical settings. The inability of some patients to verbally express their pain creates the need for a tool that could objectively assess pain in these individuals. Neuroimaging techniques combined with machine learning are seen as possible candidates for the identification of pain biomarkers. This review aimed to address the potential use of electroencephalographic features as predictors of acute experimental pain. Twenty-six studies using only thermal stimulations were identified using a PubMed and Scopus search. Combinations of the following terms were used: “EEG,” “Electroencephalography,” “Acute,” “Pain,” “Tonic,” “Noxious,” “Thermal,” “Stimulation,” “Brain,” “Activity,” “Cold,” “Subjective,” and “Perception.” Results revealed that contact-heat-evoked potentials have been widely recorded over central areas during noxious heat stimulations. Furthermore, a decrease in alpha power over central regions was revealed, as well as increased theta and gamma powers over frontal areas. Gamma and theta rhythms were associated with connectivity between sensory and affective regions involved in pain processing. A machine learning analysis revealed that the gamma band is a predominant predictor of acute thermal pain. This review also addressed the need of supplementing current spectral features with techniques that allow the investigation of network dynamics.

Funder

Fonds de recherche du Québec-Santé

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3