Accurate classification of pain experiences using wearable electroencephalography in adolescents with and without chronic musculoskeletal pain

Author:

Teel Elizabeth F.,Ocay Don Daniel,Blain-Moraes Stefanie,Ferland Catherine E.

Abstract

ObjectiveWe assessed the potential of using EEG to detect cold thermal pain in adolescents with and without chronic musculoskeletal pain.MethodsThirty-nine healthy controls (15.2 ± 2.1 years, 18 females) and 121 chronic pain participants (15.0 ± 2.0 years, 100 females, 85 experiencing pain ≥12-months) had 19-channel EEG recorded at rest and throughout a cold-pressor task (CPT). Permutation entropy, directed phase lag index, peak frequency, and binary graph theory features were calculated across 10-second EEG epochs (Healthy: 292 baseline / 273 CPT epochs; Pain: 1039 baseline / 755 CPT epochs). Support vector machine (SVM) and logistic regression models were trained to classify between baseline and CPT conditions separately for control and pain participants.ResultsSVM models significantly distinguished between baseline and CPT conditions in chronic pain (75.2% accuracy, 95% CI: 71.4%–77.1%; p < 0.0001) and control (74.8% accuracy, 95% CI: 66.3%–77.6%; p < 0.0001) participants. Logistic regression models performed similar to the SVM (Pain: 75.8% accuracy, 95% CI: 69.5%–76.6%, p < 0.0001; Controls: 72.0% accuracy, 95% CI: 64.5%–78.5%, p < 0.0001). Permutation entropy features in the theta frequency band were the largest contributor to model accuracy for both groups.ConclusionsOur results demonstrate that subjective pain experiences can accurately be detected from electrophysiological data, and represent the first step towards the development of a point-of-care system to detect pain in the absence of self-report.

Funder

EFT was financially supported by a Canadian Institutes for Health Research (CIHR) postdoctoral fellowship

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

Frontiers Media SA

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3