Altered Brain Networks in Chronic Obstructive Pulmonary Disease: An Electroencephalography Analysis

Author:

Choi Sue In1ORCID,Kim Jung Bin2ORCID

Affiliation:

1. 1Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea

2. Department of Neurology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea

Abstract

Background. Limited data are available regarding brain networks in patients with chronic obstructive pulmonary disease (COPD). Here, we investigated brain networks in COPD using graph theoretical analysis of electroencephalography data. Methods. Thirty-eight patients with COPD and 38 healthy controls underwent scalp electroencephalography. We calculated graph measures including average degree, characteristic path length, global efficiency, local efficiency, clustering coefficient, and modularity and compared them between patients and controls. Results. Average degree, global efficiency, local efficiency, and clustering coefficients were lower, while characteristic path length and modularity were higher in patients with COPD than in controls in the alpha band ( P < .05). Significant differences in node degree and global node efficiency between controls and patients were mainly prominent in the medial parieto-central regions in the alpha band. Local efficiency and node clustering coefficients mainly differed in the occipito-parietal regions in the alpha band. We observed no differences in nodal measures in the delta, theta, beta, and gamma bands and no relationships between pulmonary function test parameters and global measures in any frequency bands. Conclusions. The thalamus generates alpha activity and is responsible for controlling respiratory activities to maintain oxygen delivery to tissues in response to chronic hypoxia. We thus speculate that our findings might be related to exposure to chronic hypoxia, implicated in the pathophysiological mechanisms underlying cognitive deficits in patients with COPD. Graph theoretical analysis of resting-state electroencephalography could be considered as a quantitative framework to understand functional networks in COPD.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3