Differences in functional network between focal onset nonconvulsive status epilepticus and toxic metabolic encephalopathy: application to machine learning models for differential diagnosis

Author:

Kim Seong HwanORCID,Kim HayomORCID,Kim Jung BinORCID

Abstract

AbstractWe aimed to compare network properties between focal-onset nonconvulsive status epilepticus (NCSE) and toxic/metabolic encephalopathy (TME) during periods of periodic discharge using graph theoretical analysis, and to evaluate the applicability of graph measures as markers for the differential diagnosis between focal-onset NCSE and TME, using machine learning algorithms. Electroencephalography (EEG) data from 50 focal-onset NCSE and 44 TMEs were analyzed. Epochs with nonictal periodic discharges were selected, and the coherence in each frequency band was analyzed. Graph theoretical analysis was performed to compare brain network properties between the groups. Eight different traditional machine learning methods were implemented to evaluate the utility of graph theoretical measures as input features to discriminate between the two conditions. The average degree (in delta, alpha, beta, and gamma bands), strength (in delta band), global efficiency (in delta and alpha bands), local efficiency (in delta band), clustering coefficient (in delta band), and transitivity (in delta band) were higher in TME than in NCSE. TME showed lower modularity (in delta band) and assortativity (in alpha, beta, and gamma bands) than NCSE. Machine learning algorithms based on EEG global graph measures classified NCSE and TME with high accuracy, and gradient boosting was the most accurate classification model with an area under the receiver operating characteristics curve of 0.904. Our findings on differences in network properties may provide novel insights that graph measures reflecting the network properties could be quantitative markers for the differential diagnosis between focal-onset NCSE and TME.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Korea University College of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3