Depression Diagnosis Modeling With Advanced Computational Methods: Frequency-Domain eMVAR and Deep Learning

Author:

Uyulan Caglar1ORCID,de la Salle Sara23,Erguzel Turker T.4ORCID,Lynn Emma23,Blier Pierre23,Knott Verner23,Adamson Maheen M.5,Zelka Mehmet6,Tarhan Nevzat67

Affiliation:

1. Bulent Ecevit University, Zonguldak, Turkey

2. Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada

3. University of Ottawa, Ottawa, ON, Canada

4. Uskudar University, Uskudar, Turkey

5. Stanford University School of Medicine, Palo Alto, CA, USA

6. Uskudar University, Istanbul, Turkey

7. NPIstanbul Hospital, Istanbul, Turkey

Abstract

Electroencephalogram (EEG)-based automated depression diagnosis systems have been suggested for early and accurate detection of mood disorders. EEG signals are highly irregular, nonlinear, and nonstationary in nature and are traditionally studied from a linear viewpoint by means of statistical and frequency features. Since, linear metrics present certain limitations and nonlinear methods have proven to be an efficient tool in understanding the complexities of the brain in the identification of underlying behavior of biological signals, such as electrocardiogram, EEG and magnetoencephalogram and thus, can be applied to all nonstationary signals. Various nonlinear algorithms can be used in the analysis of EEG signals. In this research paper, we aim to develop a novel methodology for EEG-based depression diagnosis utilizing 2 advanced computational techniques: frequency-domain extended multivariate autoregressive (eMVAR) and deep learning (DL). We proposed a hybrid method comprising a pretrained ResNet-50 and long-short term memory (LSTM) to capture depression-specific information and compared with a strong conventional machine learning (ML) framework having eMVAR connectivity features. The following 8 causality measures, which interpret the interaction mechanisms among spectrally decomposed oscillations, were used to extract features from multivariate EEG time series: directed coherence (DC), directed transfer function (DTF), partial DC (PDC), generalized PDC (gPDC), extended DC (eDC), delayed DC (dDC), extended PDC (ePDC), and delayed PDC (dPDC). The classification accuracies were 84% with DC, 85% with DTF, 95.3% with PDC, 95.1% with gPDC, 84.8% with eDC, 84.6% with dDC, 84.2% with ePDC, and 95.9% with dPDC for the eMVAR framework. Through a DL framework (ResNet-50 + LSTM), the classification accuracy was achieved as 90.22%. The results demonstrate that our DL methodology is a competitive alternative to the strong feature extraction-based ML methods in depression classification.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3