The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge

Author:

Kim Hyun-Woo1,Han Sun-Kee1,Shin Hang-Sik2

Affiliation:

1. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology 373-1, Guseongdong, Yuseong-gu, Daejeon 305-701, Korea

2. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology 373-1, Guseongdong, Yuseong-gu, Daejeon 305-701, Korea,

Abstract

Food waste has been regarded as the main source of various environmental pollution in Korea due to the high volatile solids (VS) and moisture content caused by the features of dietary habits. The feasibility of food waste as a co-substrate in anaerobic digestion of sewage sludge was investigated in mesophilic and thermophilic conditions using batch tests. Cumulative methane production, dissolved organic carbon (DOC) and volatile fatty acids (VFA) were monitored to find the optimal mixing ratios of food waste and sewage sludge for the enhanced performance of co-digestion. It was observed that adequately mixed food waste led to the enhanced methane production both at mesophilic and thermophilic conditions. However, a conventional linear regression conducted for the optimisation of co-substrate mixing ratios was not accurate in describing exact methane production trends of co-digestion because of the different biodegradability of substrates. Therefore, a remodified Gompertz equation showing nonlinear relationship between variables was developed to find exact information with the same experimental data obtained at 2g VS/l generally used in biochemical methane potential (BMP) tests. Based on an influential parameter, methane production rate (MPR), the optimal mixing ratios of food waste were 39.3% and 50.1% in mesophilic and thermophilic conditions, respectively. To confirm the application of the remodified Gompertz equation, secondary batch tests were conducted with the substrate concentrations of 1-4g VS/l. In overall range tested, the confident mixing ratios of food waste was adjusted to 30-40% and 40% in mesophilic and thermophilic conditions, respectively. The most significant factor for enhanced performance was the improved organic carbon content provided by additional food waste.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3