Towards recycling of challenging waste fractions: Identifying flame retardants in plastics with optical spectroscopic techniques

Author:

Sormunen Tuomas1ORCID,Uusitalo Sanna1ORCID,Lindström Hannu1,Immonen Kirsi2,Mannila Juha2,Paaso Janne1,Järvinen Sari1

Affiliation:

1. VTT Technical Research Centre of Finland Ltd., Oulu, Finland

2. VTT Technical Research Centre of Finland Ltd., Tampere, Finland

Abstract

The use of plastics is rapidly rising around the world causing a major challenge for recycling. Lately, a lot of emphasis has been put on recycling of packaging plastics, but, in addition, there are high volume domains with low recycling rate such as automotive, building and construction, and electric and electronic equipment. Waste plastics from these domains often contain additives that restrict their recycling due to the hazardousness and challenges they bring to chemical and mechanical recycling. As such, the first step for enabling the reuse of these fractions is the identification of these additives in the waste plastics. This study compares the ability of different optical spectroscopy technologies to detect two different plastic additives, fire retardants ammonium polyphosphate and aluminium trihydrate, inside polypropylene plastic matrix. The detection techniques near-infrared (NIR), Fourier-transform infrared (FTIR) and Raman spectroscopy as well as hyperspectral imaging (HSI) in the short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) range were evaluated. The results indicate that Raman, NIR and SWIR HSI have the potential to detect these additives inside the plastic matrix even at relatively low concentrations. As such, utilising these methods has the possibility to facilitate sorting and recycling of as of yet unused plastic waste streams, although more research is needed in applying them in actual waste sorting facilities.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3