Post-Consumer Plastic Identification Using Raman Spectroscopy

Author:

Allen Valerie1,Kalivas John H.1,Rodriguez René G.1

Affiliation:

1. Department of Chemistry, Idaho State University, Pocatello, Idaho 83209

Abstract

Raman spectroscopy is evaluated as a spectroscopic method for identification of common household plastics for recycling purposes. The methods of K-nearest neighbor (KNN), cyclic subspace regression (CSR), and library searching are compared for computerized plastic classification. Plastics studied consist of polyethylene terephthalate, high-density polyethylene, polyvinyl chloride, low-density polyethylene, polypropylene, and polystyrene. With principal component analysis (PCA), visual distinction between the different plastics becomes possible. Correct class membership to all six plastic types is provided by KNN. To date, all development and uses of CSR have been based on building models for each prediction property analogous to the form of partial least-squares known as PLS1. Cyclic subspace regression is modified in this paper to also allow modeling of multiple properties, as does PLS2. The new form of CSR was able to correctly classify all six plastic types when seven-factor models were used. This paper reports that key observations made in comparing PCR to PLS1 are verified for the interrelationships of PCR and PLS2 models. Most notable is that even though PLS2 uses spectral responses and plastic identifications to form factors, PLS2 eigenvector weights are not much different from PCR eigenvector weights where PCR only uses spectral responses to form eigenvector weights. Library searching showed less significant results than KNN and CSR. Regardless of the identification approach, polyethylene samples could be identified as either being high density or low density with the use of Raman spectroscopy.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3