Affiliation:
1. Department of Chemistry, Veer Surendra Sai University of Technology, India
2. Department of Chemical Engineering, National Institute of Technology, India
Abstract
Waste polypropylene was subjected to thermal degradation in the presence of kaolin and acid-treated kaolin, with different catalyst-to-plastics ratios, in a semi-batch reactor at a temperature range of 400–550°C to obtain optimized process conditions for the production of liquid fuels. The effects of process temperature, catalyst and feed composition on yield and quality of the oil were determined. For a thermal decomposition reaction at up to 450°C, the major product is volatile oil; and the major products at a higher temperature (475–550°C) are either viscous liquid or wax. The highest yield of condensed fraction in the thermal reaction is 82.85% by weight at 500°C. Use of kaolin and acid-treated kaolin as a catalyst decreased the reaction time and increased the yield of liquid fraction. The major product of catalysed degradation at all temperatures is highly volatile liquid oil. The maximum oil yield using kaolin and acid-treated kaolin is 87.5% and 92%, respectively, at 500°C. The oil obtained was characterized using GC-MS for its composition and different fuel properties by IS methods.
Subject
Pollution,Environmental Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献