THERMOLYSIS OF MEDICAL PLASTIC WASTES USING ZEOLITE A CATALYST-KINETIC STUDY, EXPERIMENTAL OPTIMISATION AND VALIDATION

Author:

Das Amar Kumar1,Rout Saroj Kumar2,Panda Achyut Kumar3

Affiliation:

1. Department of Mechanical Engg, GIFT, Bhubaneswar, Odisha, India

2. Department of IT, Vardhaman College of Engineering, Hyderabad, Telangana, India

3. Department of Chemistry, Veer Surendra Sai University of Technology Burla, Odisha, India

Abstract

This work reports the thermo-catalytic conversion of medical plastic wastes to fuel oil using the detergent grade Zeolite A as the catalyst. The effect of catalyst on the pyrolysis is ascertained from the kinetic data obtained from thermogravimetric analysis assuming it to be a first-order reaction. A significant reduction in activation energy of the thermal degradation reaction is found in presence of the Zeolite A catalyst. The pyrolysis runs were performed at different temperatures from 400–550 °C in a stainless-steel batch reactor system to obtain an optimum condition for suitable waste to energy process. The highest oil yield of 79% was obtained at 500 °C with 10% catalyst concentration. The thermogravimetric analysis and the batch pyrolysis experimental result indicated a promising effect of the catalyst in terms of the enhanced rate of reaction and conversion. The oil fraction obtained in the optimum condition of catalytic pyrolysis was analysed for its composition and fuel properties. It confirmed the presence of branched alkane and alkene with composition C10–C18. Again, the fuel properties of the oil such as specific gravity (0.793), viscosity (3.75Cst@ 30 °C), and flash point (<11 °C) resemble that of the petro fuels. Neural Networks (NNs) are used to recognize patterns, and relationships in data and validate the experimental results of this reaction and the results indicate that the use of ANN in thermo-catalytic degradation of medical waste to fuel oil is a feasible option that should be considered for real-time applications.

Publisher

Vilnius Gediminas Technical University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3