A new intelligent fault diagnosis and prognosis method for wind turbine doubly-fed induction generator

Author:

Kamarzarrin Mehrnoosh1,Refan Mohammad Hossein1ORCID,Amiri Parviz1,Dameshghi Adel1

Affiliation:

1. Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

Condition Monitoring and fault-prognosis approaches are typical methods to reduce the energy production cost and Wind Turbine downtime. In this paper, a new CM combinatory system and fault prognosis are proposed based on an adaptive threshold, feature-level fusion, and new degradation indicator and the CM operation is based on a new index Symptom of Degeneration crossing of an adaptive threshold. Also, a new adaptive threshold is proposed based on the fuzzy rules and WT operation point. Fault prognosis is conducted with the Least-Squares Support-Vector Machine method, and Particle Swarm Optimization is employed for the optimum selecting of the wavelet Kernel function and the SVM parameters. The proposed technique is compared with other methods and the simulation results illustrate the PSO-LS-SVM superiorities. The effectiveness of the proposed prognostic structure is evaluated using a WT test-rig prototype. The experimental results demonstrate that the Condition-Based Maintenance is improved by the proposed structure and the RUL is predicted before serious damage occurrences.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3