Health assessment of wind turbine bearings progressive degradation based on unsupervised machine learning

Author:

Maatallah Hamida1ORCID,Ouni Kais1

Affiliation:

1. Research Laboratory Smart Electricity & ICT, SEICT, LR18ES44, National Engineering School of Carthage, The University of Carthage, Tunis, Tunisia

Abstract

High-speed shaft bearing (HSSB) failures are exorbitant since they lead electrical energy generation to halt suddenly. In order to identify the health condition of the wind turbine and preserve the sustainability of energy production, a nonlinear vibration-based monitoring technique based on kernel principal component analysis (KPCA) has been developed. After extracting degradation characteristics from the time, frequency, and time-frequency domains. The most sensitive features are then fused using KPCA to capture the monitored bearing’s operating conditions; this method demonstrated its efficiency in dealing with the nonlinearity of the system. To detect flaws in HSSB and assess whether it is healthy, degraded, or broken, [Formula: see text], and SPE charts have been used. Real run-to-failure data from a wind turbine HSSB is used to validate the proposed technique. The suggested strategy caught the nonlinear relationship in the process variables more successfully than existing techniques, including linear PCA, and demonstrated enhanced process monitoring performance.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3