Statistical learning modeling based health indicator construction for machine condition monitoring

Author:

Deng YanqingORCID,Hou BingchangORCID,Shen ChangqingORCID,Wang DongORCID

Abstract

Abstract Machine condition monitoring aims to evaluate machine health conditions by analyzing machine vibration signals, which is helpful to make timely maintenance decisions and prevent unexpected accidents. Currently, constructions of virtual and physical health indicators (HIs) are commonly used methods for machine condition monitoring. However, most classic physical and virtual HIs lack inherent thresholds, robustness, monotonicity, and interpretability for machine condition monitoring. In this paper, a statistical learning modeling based HI construction method for machine condition monitoring is proposed to solve these problems. Firstly, a statistical decision theory is suggested to clearly describe a machine condition monitoring objective, and subsequently shapes of square envelope spectra are robustly modeled by using a parametric statistical model called a penalized B-spline approximation. Further, an interpretable HI named B-spline weight HI (BSWHI) as well as an inherent statistical threshold is accordingly constructed based on the Mahalanobis distance between B-spline weights of testing samples and a healthy sample. Experiments on bearing and gear run-to-failure datasets are studied to show that the proposed BSWHI and its inherent statistical threshold can effectively detect early machine faults and simultaneously provide monotonic degradation assessment trends. The proposed interpretable BSWHI has achieved a substantial improvement over existing classic HIs.

Funder

National Natural Science Foundation of China

Research Project of State Key Laboratory of Mechanical System and Vibration

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3