Laser Transmission Welding of Semi-Crystalline Thermoplastics—Part I: Optical Characterization of Nylon Based Plastics

Author:

Kagan V. A.1,Bray R. G.1,Kuhn W. P.1

Affiliation:

1. Honeywell, Morristown, NJ 07962-2332, USA

Abstract

Optimization of welding for thermoplastic parts strongly depends on the material properties, part design, as well as the welding operating technology conditions. Laser transmission welding requires preferential deposition of energy and subsequent melting of the material in the interfacial zone. This is optimized when the laser beam is transmitted through the transparent part and absorbed by the adjoining part to be welded. Energy deposition can be controlled to some extent by adjusting laser parameters (power, choice of beam focussing optics, sweep rate etc.). The thermoplastic material properties may have the greater influence and need to be characterized for optimum material selection. Commercial nylon type materials cover a large array of compositions, which may affect the welding process. To guide selection of nylon based plastics for a range of applications we have measured the influence of specific factors such as fiber-glass, mineral filler, impact modifier content, additives, and color versions on the Near InfraRed (NIR) transmission properties. In a following paper (Part II) a1 we have related these findings to the mechanical performance of shear and butt joints produced under various laser welding technology conditions (laser beam power, welding speed, laser beam/spot diameter, clamp pressure, plastic color, etc.). Comprehensive results of this evaluation will assist designers and technologists in thermoplastics selection for laser welding applications. The purpose of this report is to increase the understanding of the plastics engineering community regarding the usefulness and possible applicability of laser transmission welding (LTW) technology for nylon made components.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3