Evaluating glass fiber reinforced composite sleepers to mitigate elastic fastening system spike fatigue failure: A finite element study

Author:

Khachaturian Christian1ORCID,Dersch Marcus S1ORCID,Liu Shushu2ORCID,Edwards J Riley1ORCID

Affiliation:

1. Rail Transportation and Engineering Center—RailTEC, Department of Civil and Environmental Engineering—CEE, Grainger College of Engineering—GCoE, University of Illinois at Urbana-Champaign—UIUC, Urbana, IL, USA

2. Changeis Inc. Volpe National Transportation Systems, Cambridge, MA, USA

Abstract

North American railroads have experienced spike fastener fatigue failures due to spike overloading that have led to multiple derailments. Failures have primarily been found in timber sleeper track constructed with elastic fasteners. This is likely because the elastic fasteners change the load path, resulting in spikes becoming a primary component to transfer the longitudinal forces. Mitigation methods to prevent spike overloading have been limited and thus, this novel study seeks an alternative method leveraging engineered composite sleepers to reduce spike stress. This paper first documents and compares typical composite and timber sleeper properties as reported in the literature. Then, this paper describes the development and validation of a single spike-in-sleeper finite element model (FEM) used to investigate the interaction between the composite sleeper and spike. A glass fiber reinforced composite (GFRC) sleeper was selected due to its high elastic modulus and compressive strength reported in the literature. The validated model was used to quantify the effect of these critical material properties on spikes subjected to longitudinal loads. The GFRC’s stiffness and compressive strength values lead to a 30% reduction in the maximum spike stress when compared to spikes installed in timber sleepers. The reduced spike stress in the GFRC fell below the spike’s expected fatigue limit. Finally, this paper provides required compressive strength for given longitudinal loads to ensure the spike stress falls below the fatigue limit in different operating environments. This characterization of required composite sleeper strength properties can be used to advance track system mechanistic-empirical design.

Funder

U.S. Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3