Redefining rail systems verification and validation: The safety/security STAIRCASE model

Author:

Bearfield George1ORCID,Van Gulijk Coen2ORCID,Thomas Richard James3

Affiliation:

1. Engineering, University of Huddersfield School of Computing and Engineering, Huddersfield, UK

2. School of Computing and Engineering, University of Huddersfield, Huddersfield, UK

3. School of Engineering, University of Birmingham, UK

Abstract

Safety critical functions of the engineered railway need to perform at levels of integrity that are so high that an acceptable failure rate cannot be demonstrated through testing alone. Where such functions need to be implemented in complex programmable electronic systems certain design, build and test requirements are defined in technical standards and these are deemed to ensure that the correct level of systematic integrity is achieved. These approaches are based on assumptions around how system requirements are managed and delivered which are increasingly challenging to meet in practice. In particular the V&V lifecycle used in functional safety standards and emerging cyber security design standards is idealised. It assumes a top-down cascade of requirements for each delivery project. The approaches have become the de-facto standard internationally and are now mandated to an extent in European railway safety regulations. This paper proposes a different approach: a new lifecycle model that aligns better with the reality of the modern global supply chain and the order in which asset design and project delivery activities are actually undertaken to improve the ability to proactively manage safety.This leads to a fundamental change in the assurance philosophy to bring a simpler and more understandable approach. A framework for applying this approach is set out along with further research objectives to deliver the solution in practice.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3