Wheel–rail dynamic interaction caused by wheel out-of-roundness and its transmission between wheelsets

Author:

Tao Gongquan1ORCID,Liu Mengqi1,Xie Qinglin1,Wen Zefeng1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, People’s Republic of China

Abstract

High-order and low-order wheel out-of-roundness (OOR) often occur on metro train wheels, which can intensify the wheel–rail dynamic interaction. A vehicle–track rigid-flexible coupled dynamics model is built through combining the dynamics software SIMPACK with the finite element software ANSYS, which is validated by field vibration measurement results of vehicle and track. Two adjacent vehicles with two two-axle bogies for each one are considered in the model. The wheel–rail interactions caused by high-order and low-order wheel OOR are investigated. The influence of the wheel–rail interaction caused by wheel OOR on one wheelset on wheel–rail interactions at other 7 wheelsets is explored. The results show that the wheel OOR can excite the first bending vibration of the wheelset and the P2 resonance at a normal operating speed, which can result in a considerable increase of the wheel–rail dynamic interaction and wheelset vibration. The wheel–rail dynamic interaction can be transmitted from the polygonised wheelset to another wheelset of the same bogie through the rail. However, the transmission is negligible from the path of the bogie. The amplitude of wheel OOR has no effect on the transmission ratio of wheel–rail dynamic interaction, but the vertical stiffness and damping coefficient of fasteners greatly influence the transmission. The two wheelsets on the same bogie should be re-profiled simultaneously if the radial run-out for one wheelset exceeds the limit and for the other does not. The effects of vibration transmission between wheelsets and track flexibility need to be taken into account in a model for predicting the development of wheel OOR.

Funder

Regional Innovation Cooperation Project of Sichuan Province of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Scientific Research Foundation of the State Key Laboratory of Traction Power of Southwest Jiaotong University

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3