Ultrasonic monitoring of insulated block joints

Author:

Stephen JT1,Hardwick C2,Beaty P2,Lewis R1,Marshall MB1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

2. LB Foster Rail Technologies (UK) Ltd, Sheffield, UK

Abstract

Insulated block joints are essential components used in railway tracks. They are divided into circuits and are used for train detection and signalling. However, they also represent a weak point in the track system and have a finite life. Condition monitoring of these components for planning preventative maintenance is currently labour intensive, and can be significantly expensive for the rail operator. In this study, insulated block joints were fatigued via shear load, whilst being condition monitored for degradation using a normally incident ultrasonic technique. Tests were also initially performed on lap-joints and shear specimens to further understand the response of the ultrasonic signal to failure of the adhesive layer under controlled conditions. Dynamic reflection coefficients as well as the applied load were recorded in all tests, and results were compared to failure zones on the specimens. The results showed that the ultrasonic technique was able to determine the onset of failure and de-bonding of the adhesive layer in addition to degradation and wear. The technique was also able to highlight differences in performance between two different liners, pultruded glass reinforced polyester resin and a flexible glass fibre sheet, with the latter showing improved resistance. The outcomes of this study have highlighted the viability of condition monitoring insulated block joints using an ultrasonic approach and have provided a basis for a future field trial.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3