An investigation into the influence of wheel–rail contact relationships on the carbody hunting stability of an electric locomotive

Author:

Li Wei1ORCID,Guan Qinghua1,Chi Maoru1,Wen Zefeng1,Sun Jianfeng23

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

2. Key Laboratory of Intelligent Operation and Maintenance Technology and Equipment for Urban Rail Transit of Zhejiang Province, Zhejiang Normal University, Jinhua, China

3. School of Engineering, Zhejiang Normal University, Jinhua, China

Abstract

Carbody hunting stability has attracted more and more attention due to its great influence on the dynamic performance of a railway vehicle. To fully understand the correlation between the wheel–rail contact relationship and the carbody hunting stability of an electric locomotive, the wheel–rail contact geometry analysis and the multi-body dynamics simulation are carried out in this work. The focus is on the influences of track parameters (including rail profile, rail cant and track gauge) on wheel–rail contact relationships and carbody hunting stability. A group of rail profiles are obtained by interpolating between the standard CHN60 profile and the worn rail profiles. The nominal equivalent conicity, the effective equivalent conicity and the wheel–rail contact bandwidth for a wheelset lateral displacement of ±6 mm are used to evaluate the wheel–rail contact relationship, while the lateral continuous comfort index is used to evaluate the carbody hunting stability. The simulation results show that keeping the rail cant at about 1/40 and reducing the track gauge and the wear depth at the gauge corner of rail can improve the carbody hunting stability of the electric locomotive. Furthermore, the effective equivalent conicity is a good choice to establish the relationship between the wheel–rail contact geometry and the carbody hunting stability.

Funder

Science and Technology Program of Guangxi Province of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference32 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3