A spatial dynamics model for heavy-haul electric locomotives considering the dynamic coupling effect of gear transmissions

Author:

He Chunyan1,Chen Zaigang12ORCID,Zhai Wanming1,Jiang Jianzheng1,Wang Kaiyun1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, P.R. China

2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, P.R. China

Abstract

A locomotive is usually powered by the electromagnetic torque which is transmitted from the traction motor to the wheelset by gear transmission. In order to investigate the dynamic coupling effects from the gear transmission subsystems on the entire locomotive dynamics system, a comprehensive spatial locomotive dynamics model that considers the dynamic coupling effect of the gear transmissions is developed based on the multibody dynamics theory. In this model, the moved Marker technique is employed to calculate the dynamic mesh force of the gear pairs through which more accurate time-varying gear mesh stiffness excitations could be imported, which is the core of this dynamic model. Then, the established locomotive dynamics model is validated by comparing with the experimental test results. Finally, the dynamic effects of the gear transmissions are revealed by comparing with the results from the traditional locomotive dynamics model without considering the dynamic excitations from the gear transmissions. The results indicate that the gear transmissions have negligible effects on the vibrations of the carbody and the bogie frame, and on the lateral vibrations of the motor and the wheelset. However, the gear transmissions have significant effects on the vertical and, in particular, the longitudinal vibrations of the motor and the wheelset. Thus, it is suggested that the dynamic effects of the gear transmissions are considered in the locomotive dynamics modeling, especially when the vibrations of the motors and the wheelsets are taken into account.

Funder

open fund from the State Key Laboratory of Mechanical Transmissions of Chongqing University

Sichuan Science and Technology Program

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3