An Analysis of the Kinematical Characteristics of an Eccentric Curve-Face Gear Pair with Compound Motion

Author:

He Chunjiang1,Zhang Jinxu1,Lin Chao2ORCID

Affiliation:

1. School of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

2. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China

Abstract

An atypical face gear pair with complex transmission motion can be used in intermittent reciprocating mechanisms with more precise transmission and a much higher capacity than conventional mechanisms, such as cams and linkages. In this study, we derive a mathematical equation for the complex tooth surface of this gear pair. We indicate the change in root cutting, top sharpening and the effective width of the tooth surface with different parameters. Additionally, we derive the governing equation for the kinematical characteristics of this eccentric curve-face gear pair with a rigid–flexible coupling system, revealing the continuous intermittent contact principle of this gear type with different parameters. Boundary conditions for the gear pair are proposed, demonstrating that the vibration of the gear pair is more obvious, even at a low velocity. In addition, the critical velocity, which mostly ranges from 300 rpm to 400 rpm, is affected by the stiffness of the frames and the parameters of the tooth surfaces. The interval space and interval time of the intermittent contact system are Δd≤0.3 mm and Δt≤5.6×10−4 s, with visible surface sliding on the contact area. It is shown that the contact points are firstly concentrated at the outer part of the tooth surface and that the meshing will break off at the first tooth with the minimum inner radius RGi−min. These theoretical results, which have been verified experimentally, provide theoretical support for further analysis and the better application of this unconventional gear pair.

Funder

Postdoctoral Research Project

Science Fund Project of Chongqing University of Science and Technology

the Science and Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3