Design and analysis method of nonlinear helical springs using a combining technique: Finite element analysis, constrained Latin hypercube sampling and genetic programming

Author:

Gu Zewen1ORCID,Hou Xiaonan1,Ye Jianqiao1

Affiliation:

1. Department of Engineering, Lancaster University, Lancaster, UK

Abstract

Helical springs have been widely used in various engineering applications for centuries. For many years, there is no significant development in the design methods of helical springs. Recently, a renewed interest is raised from the industry in exploring new designs for the helical springs with novel configurations due to the requirements of customised properties, such as specific spring stiffness and natural frequency for better performance of valve train systems. In this paper, an innovative method which combines the techniques of Finite Element Analysis (FEA), constrained Latin Hypercube sampling (cLHS) and Genetic Programming (GP) is developed to design and analyse helical springs with arbitrary shapes. cLHS method is applied to generate 300 sets of spring samples within a constrained design domain, and FE analysis is conducted on these spring samples. Two meta-models are developed from the 300 sets of FE results by using GP. They successfully describe the relationships between the design parameters and the overall mechanical performances including compression force and fundamental natural frequency of helical springs. The results show that the developed models have robust abilities on designing helical springs with arbitrary shapes, which significantly expands the design domain of the engineering design methods and potential for precise optimization of helical springs.

Funder

Centre of global Eco-Innovation

European Regional Development Fund

Force Technology Ltd.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3