Modeling pantograph–catenary arcing

Author:

Zhu Guang-ya1,Gao Guo-qiang1,Wu Guang-ning1,Gu Zhen1,Wu Jie1,Hao Jing1

Affiliation:

1. School of Electric Engineering, Southwest Jiaotong University, People’s Republic of China

Abstract

The performance of the pantograph–catenary system plays a significant role in determining the reliability and safety of a high-speed train. With an increase in train speed, repeated separations between the pantograph and catenary result in an increased number of arcing events, which exacerbate the levels of damage on the pantograph–catenary system, leading to frequent train accidents. The arcing event is a complex phenomenon that is influenced by various factors, and involves interactions between the electromagnetic, thermal and airflow fields. The high temperatures generated by an arc result in ablation of material in the pantograph–catenary system, thus reducing its life expectancy. In order to investigate the mechanism of this damage to the pantograph–catenary system, a model of the arcing phenomenon is established and analyzed. In the proposed model, a set of arc plasma conservation equations are solved to determine the temperature distribution in the arc. The influences of different experimental conditions on the characteristics of the arc and the temperature distributions in the catenary wire and pantograph strip are calculated and discussed. Finally, the results obtained in the simulation studies are compared with realistic arc images recorded using a high-speed camera, and a good agreement is found.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3