Affiliation:
1. School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai, China
2. College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China
Abstract
The deformation of longitudinally coupled prefabricated slab track (LCPST) due to high temperature may lead to a reduction in ride comfort and safety in high-speed rail (HSR) operation. It is thus critical to understand and track the development of such defects. This study develops an online monitoring system to analyze LCPST deformation at different slab depths under various temperatures. The trackside system, powered by solar energy with STM8L core that is ultra-low in energy consumption, is used to collect data of LCPST deformation and temperature level uninterruptedly. With canonical correlation analysis, it is found that LCPST deformation presents similar periodic variation to yearly temperature fluctuation and large longitudinal force may be generated as heat accumulates in summer, thereby causing track defects. Then the distribution of temperature and deformation data is categorized based on fuzzy c-means clustering. Through the distribution analysis, it is suggested that slab inspection can be shortened to 6 hours, i.e. from 10:00 am to 4:00 pm, reducing 14.3% track inspection workload from the current practice. The price of workload reduction is only a 2% chance of missed detection of slab deformation. The finding of this research can be used to enhance LCPST monitoring efficiency and reduce interruption to HSR operation, which is an essential step in promoting reliable and cost-effective track service.
Funder
National Natural Science Foundation of China
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献