A fault detection method for railway point systems

Author:

Vileiniskis Marius1,Remenyte-Prescott Rasa1,Rama Dovile1

Affiliation:

1. Nottingham Transportation Engineering Centre, University of Nottingham, UK

Abstract

Failures of railway point systems (RPSs) often lead to service delays or hazardous situations. A condition monitoring system can be used by railway infrastructure operators to detect the early signs of the deteriorated condition of RPSs and thereby prevent failures. This paper presents a methodology for early detection of the changes in the measurement of the current drawn by the motor of the point operating equipment (POE) of an RPS, which can be used to warn about a possible failure in the system. The proposed methodology uses the one-class support vector machine classification method with the similarity measure of edit distance with real penalties. The technique has been developed taking into account specific features of the data of infield RPSs and therefore is able to detect the changes in the measurements of the current of the POE with greater accuracy compared with the commonly used threshold-based technique. The data from infield RPSs, which relate to incipient failures of RPSs, were used after the deficiencies in the data labelling were removed using expert knowledge. In addition, possible improvements in the proposed methodology were identified in order for it to be used as an automatic online condition monitoring system.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3