Prediction of Radio Signal Failures of Communication Based Train Operating Systems by Machine Learning Methods

Author:

Arslan Burak1ORCID,Tiryaki Hasan2ORCID

Affiliation:

1. ISTANBUL UNIVERSITY-CERRAHPASA

2. Istanbul University - Cerrahpasa

Abstract

The use of rail systems in urban public transportation has become a necessity for reasons such as time saving, travel comfort and operating costs, especially in cities with high population and road traffic. Communication based train operating systems (CBTC) are used for the safe use of urban rail systems and the maximum capacity of the railway line. In this study, in line with the data collected from the trains on a railway line operated with CBTC, the status of the radio signals that enable the wireless communication of the trains with the trackside signaling equipment was evaluated by machine learning methods, and the situations that may have negative effects on the train operations of the problems at the signal level were evaluate. The problems on the antennas which receives signals from trackside above trains, the poor connection related with fiber optical and LAN cables, the trackside transmitter antenna orientation problems causes decrease on signal levels. It is aimed that to take actions about the problematic signal levels without any negative impact on the passenger comfort and the operation yet. The radio signal losses cause unexpected trains stops and delays. A decision support model has been developed that will offer early solution suggestions to system maintainers in order to intervene first. In conclusion, since it is the first study related with failure prediction by using radio signal levels data on railway signaling system, this study presents an important innovation in terms of literature.

Publisher

Erzincan Universitesi Fen Bilimleri Ensitusu Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3