The dynamic interaction effects of railway tunnels: Crossrail and the Grand Central Recording Studios

Author:

Brookes Daniel1,Hamad Waleed I1,Talbot James P1,Hunt Hugh EM1,Hussein Mohammed FM2

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge, UK

2. Department of Civil and Architectural Engineering, College of Engineering, Qatar University, Doha, Qatar

Abstract

In cities around the world, underground railways offer an environmentally friendly solution to society’s increasing demand for mass transport. However, they are often constructed close to sensitive buildings, where the resulting ground-borne noise and vibration can cause disturbance to both the occupants and the equipment. Such a scenario occurred in central London, where the new twin tunnels of Crossrail were bored beneath the Grand Central Recording Studios, causing an immediate concern. As a result, vibration in the studios’ building was monitored throughout the Crossrail construction period. Since Crossrail is yet to operate, the resulting data provide a unique opportunity to investigate the effect of new tunnels, acting as passive buried structures, on the existing vibration environment. This paper presents the results of such an investigation, together with complementary results from a theoretical four-tunnel boundary-element model. The data analysis, presented in the first half of the paper, indicates that the construction of the second Crossrail tunnel has led to an overall reduction in the noise and vibration levels beneath the studios, due to the operation of the nearby Central line trains of London Underground. This is predominantly due to a reduction of approximately 6 dB in the 63 Hz band-limited levels but accompanied by a slight increase, of approximately 2 dB, in the 125 Hz band. Further analysis indicates that any seasonal variations in vibration levels over the measurement period are negligible, adding weight to the conclusion that the observed changes are a causal effect of the tunnel. The second half of the paper presents results from the model, which aims to simulate the dynamic interaction between the Central line tunnels and those of Crossrail. With nominal parameter values, the results demonstrate qualitative similarities with the measurement findings, thereby adding to the growing body of evidence that dynamic interaction between neighbouring tunnels can be significant.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3