Monitoring of lateral and cross level track geometry irregularities through onboard vehicle dynamics measurements using machine learning classification algorithms

Author:

De Rosa A1ORCID,Kulkarni R2ORCID,Qazizadeh A2,Berg M2,Di Gialleonardo E1,Facchinetti A1,Bruni S1ORCID

Affiliation:

1. Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy

2. Department of Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

In recent years, significant studies have focused on monitoring the track geometry irregularities through measurements of vehicle dynamics acquired onboard. Most of these studies analyse the vertical irregularity and the vertical vehicle dynamics since the lateral direction is much more challenging due to the non-linearities caused by the contact between the wheels and the rails. In the present work, a machine learning-based fault classifier for the condition monitoring of track irregularities in the lateral direction is proposed. The classifiers are trained with a dataset composed of numerical simulation results and validated with a dataset of measurements acquired by a diagnostic vehicle on the straight track sections of a high-speed line (300 km/h). Classifiers based on decision tree, linear and Gaussian support vector machine algorithms are developed and compared in terms of performance: good results are achieved with the three algorithms, especially with the Gaussian support vector machine. Even though classifiers are data driven, they retain the essence of lateral dynamics.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3