Railway crossing vertical vibration response prediction using a data-driven neuro-fuzzy model – Influence of train factors

Author:

Mehrzad Kaveh1,Ataei Shervan1ORCID

Affiliation:

1. School of Railway, Iran University of Science and Technology (IUST), Tehran, Iran

Abstract

This paper provides a data-driven model of the vibration response of a railway crossing during vehicle passages. Many of the features of trains passing through instrumented crossing are extracted from measured data. Based on the feature selection process, speed, dynamic axle load and the number of wagons are found proper inputs in the prediction model. Train-crossing interaction response at a crossing due to passing trains is modeled from a data-driven Neuro-Fuzzy soft computing approach. Locally Linear Model Tree (LOLIMOT) is applied to predict the crossing nose acceleration. The model comparison against measurements shows that the ability to predict the extrapolation cases at off-range speeds has satisfactory compatibility. The monitored passing trains are ranked based on the LOLIMOT input space dimension cuts and extrapolation of the model up to higher train speeds. The influence of train factors (i.e. speed, dynamic axle load, number of wagons) on crossing response is demonstrated. Also, based on the analysis results, it is concluded that with a steady increase in train speeds, some trains show a greater amplification in vibration response than others. The results can be applied in data processing in the crossing vibration monitoring and detection of trains with crossing impact sensitive to speed increasing that can lead to proper operation policies to reduce damages and maintenance costs.

Funder

Iranian railway

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3