Quantification of longitudinal fastener stiffness and the effect on fastening system loading demand

Author:

Khachaturian Christian1ORCID,Dersch Marcus S1ORCID,Edwards J Riley1ORCID,Trizotto Matheus1

Affiliation:

1. Rail Transportation and Engineering Center – RailTEC, Department of Civil and Environmental Engineering – CEE, Grainger College of Engineering - GCoE, University of Illinois at Urbana-Champaign - UIUC, Urbana, IL, USA

Abstract

Over the past 20 years, there have been at least 10 derailments due to spike fastener fatigue failures in North America. These fatigue failures have been considered a moderate to severe challenge that require manual walking inspections that are both time and labor intensive. These fatigue failures have been found to result from spike overloading due to lateral and longitudinal loads. To date, there has been limited quantification of the vertical, lateral, and longitudinal fastener forces in track. This paper quantifies the effect of fastener type on fastener load to account for various track types and locations. Laboratory experimentation was performed to quantify the stiffness of multiple fastening systems and this data was input into a previously validated analytical model to quantify the effect of stiffness on fastener loading. Additional laboratory experimentation was performed to quantify the relationships between both fastening system type and vertical loading and spike strain. While the laboratory data indicate a significant variance in stiffness between fastening systems, the model results indicate that the load transferred to the fastening system is less sensitive. However, spike strain data indicate the load path was affected by fastener type and vertical load. The characterization of longitudinal stiffness of multiple fastening systems and the relationship to spike load as presented can be used to advance track mechanistic-empirical design and improve rail neutral temperature prediction and track buckling models.

Funder

Federal Railroad Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference28 articles.

1. Railway slab track systems: review and research potentials

2. Prevention of Derailments Due to Concrete Tie Rail Seat Deterioration

3. Wolf GP. Effects of wide gauge on derailment potential. In: Proceedings of 2014 Wheel Rail Interaction Heavy Haul Seminar Chicago, IL, January 2014, p. 4.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3