Benefits of mechatronically guided vehicles on railway track switches

Author:

Farhat Nabilah1ORCID,Ward Christopher P1,Dixon Roger1,Goodall Roger M1

Affiliation:

1. School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK

Abstract

Conventional rail vehicles struggle to optimally satisfy the different suspension requirements for various track profiles, such as on a straight track with stochastic irregularities, curved track or switches and crossings, whereas mechatronically guided railway vehicles promise a large advantage over conventional vehicles in terms of reduced wheel–rail wear, improved guidance and opening new possibilities in vehicle architecture. Previous research in this area has looked into guidance and steering using multi-body simulation models of mechatronic rail vehicles of three different mechanical configurations – secondary yaw control, actuated solid-axle wheelset and driven independently rotating wheelsets (DIRW). The DIRW vehicle showed the best performance in terms of reduced wear and minimal flange contact and is therefore chosen in this paper for studying the behaviour of mechatronically guided rail vehicles on conventional switches and crossings. In the work presented here, a mechatronic vehicle with the DIRW configuration is run on moderate and high-speed track switches. The longer term motivation is to perform the switching function from on-board the vehicle as opposed to from the track as is done conventionally. As a first step towards this, the mechatronic vehicle model is compared against a conventional rail vehicle model on two track scenarios – a moderate speed C type switch and a high-speed H switch. A multi-body simulation software is used to produce a high fidelity model of an active rail vehicle with independently rotating wheelsets where each wheel has an integrated ‘wheelmotor’. This work demonstrates the theory that mechatronic rail vehicles could be used on conventional switches and crossings. The results show that the mechatronic vehicle gives a significant reduction in wear, reduced flange contact and improved ride quality on the through routes of both moderate and high-speed switches. On the diverging routes, the controller can be tuned to achieve minimal flange contact and improved ride quality at the expense of higher creep forces and wear.

Funder

In2rail

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3