Application and improvement of a direct method optimization approach for battery electric railway vehicle operation

Author:

Schenker Moritz1ORCID,Schirmer Toni1,Dittus Holger1

Affiliation:

1. German Aerospace Center (DLR), Institute of Vehicle Concepts, Stuttgart, Germany

Abstract

While the largely electrified rail network allows for direct utilization of renewable energy sources, there is still a considerable share of diesel-powered trains operating on non- and partly electrified tracks. To replace these, the more sustainable alternatives such as battery electric railway vehicles need to present a viable option with sufficient range. This paper aims to adapt and improve an existing optimization algorithm, previously used with diesel-powered trains, for the operation of battery electric railway vehicles. In this new approach, battery control is optimized alongside train control, utilizing a direct method solver to find the minimum energy trajectory. Furthermore, a detailed train model is implemented that is designed for operation on partly electrified tracks. To yield a highly accurate, yet also sufficiently fast algorithm, a numerical analysis is conducted and the parameters of the algorithm are determined accordingly. Finally, the application of the adapted algorithm on a use case in Germany shows that both velocity profile and control adapt in a way that minimizes utilization of the battery. The results indicate that the proposed algorithm presents a reliable and robust method to obtain minimum energy controls for battery electric railway vehicles with any electrification pattern.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3